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Abstract
Bound and scattering solutions of the PT -symmetric Rosen–Morse II potential
are investigated. The energy eigenvalues and the corresponding wavefunctions
are written in a closed analytic form, and it is shown that this potential
always supports at least one bound state. It is found that with increasing non-
Hermiticity the real bound-state energy spectrum does not turn into complex
conjugate pairs, i.e. the spontaneous breakdown of PT symmetry does not
occur, rather the energy eigenvalues remain real and shift to positive values.
Closed expression is found for the pseudo-norm of the bound states, and its sign
is found to follow the (−1)n rule. Similarly to the known scattering examples,
the reflection coefficients exhibit a handedness effect, while the transmission
coefficient picks up a complex phase factor when the direction of the incoming
wave is reversed. It is argued that the unusual findings might be caused by the
asymptotically non-vanishing, though finite imaginary potential component.
Comparison with the real Rosen–Morse II potential is also made.

PACS numbers: 03.65.Ge, 03.65.Nk, 02.30.Gp, 11.30.Er

1. Introduction

The investigation of non-Hermitian quantum mechanical systems has gone through a
renaissance in the past decade after the introduction of PT -symmetric quantum mechanics [1]
(for a review see, e.g., [2]). It turned out that manifestly non-Hermitian quantum Hamiltonians
can possess partly or fully real energy spectra and other features (e.g., the conservation of the
norm) that have been usually associated with Hermitian systems. These studies strengthened
anew the importance of the relation between the Hermiticity of a Hamiltonian and the choice
of the inner product and the space it is defined on. Non-Hermitian models making use of

1751-8113/09/195302+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/19/195302
mailto:levai@atomki.hu
http://stacks.iop.org/JPhysA/42/195302


J. Phys. A: Math. Theor. 42 (2009) 195302 G Lévai and E Magyari

modified metric operators have been known previously under different names, e.g., pseudo-
[3], quasi- [4] and crypto-Hermiticity [5], and these theories have enjoyed renewed interest
recently.

PT -symmetric quantum mechanics was also identified as a special case of pseudo-
Hermiticity [6]. In the case of the one-dimensional Schrödinger equation PT symmetry,
i.e., the invariance of the Hamiltonian under the joint action of the P space and T time
inversion prescribes the V ∗(−x) = V (x) relation for the potential. The first examples for
PT -symmetric potentials were studied numerically and included the archetypical example
V (x) = x2(ix)ε [1]. This potential possesses the real and positive energy spectrum for
ε � 0, while shifting it below this value the energy eigenvalues gradually merge pairwise and
reemerge as complex conjugate pairs. This mechanism was interpreted as the spontaneous
breakdown of PT symmetry, as the eigenfunctions ceased to be the eigenfunctions of the PT
operator then.

Soon after the introduction of PT -symmetric quantum mechanics, the investigation into
the PT -symmetric versions of exactly solvable potentials was started. The importance of
these studies lies in the fact that the exact analytic formulation of such systems might allow
deeper insight into the mechanisms underlying PT symmetry including also its spontaneous
breakdown. The PT -symmetric version of a number of solvable potentials has been described
including the simplest shape-invariant class [7–14], the more general Natanzon class [15, 16]
and even potentials beyond it [17]. Investigations focused on features characteristic of PT -
symmetry, such as the formulation of conditions for real and complex eigenvalues [12–14],
the mechanism of the spontaneous breakdown of PT symmetry [18, 19], the connection of
algebraic [20–22] and supersymmetric [12, 23] structures with PT symmetry, the analysis of
the pseudo-norm [19, 24, 25] and the exact construction of the C operator [26].

Scattering aspects of PT -symmetric potentials have also been studied in the exact
analytical formulation. For this, asymptotically vanishing potentials were selected
[21, 22, 27, 28] and the implications of PT symmetry have been analyzed. Besides the
manifest non-unitarity of the scattering results, a remarkable finding was the handedness of
the potentials [27] meaning that the reflection coefficient depended on whether the wave
arrived from the absorptive or the emissive regime of the odd imaginary potential component.

Here we study the PT -symmetric Rosen–Morse II potential, defined on the real x-axis,
and investigate both its bound and scattering states. The novel feature with respect to otherPT -
symmetric potentials is that although its real component vanishes asymptotically, its imaginary
component does not, although it remains finite. We aim at exploring the consequences of these
unusual features of the PT -symmetric Rosen–Morse II potential, rather than proposing the
application of this potential to specific physical problems. It is worth mentioning though that
this potential could describe a system in which an emissive and an absorptive domain are
separated by a finite real, short-range potential well. Its limiting case would be a real Dirac
δ-potential at x = 0 that separates the two domains of an odd imaginary step potential.

In section 2, we establish the notation in a general form that includes both the PT -
symmetric and real Rosen–Morse II potential. In section 3, we specify it to the PT -symmetric
case and analyze the bound and scattering states in two respective subsections. For the sake of
completeness, we also discuss the real Rosen–Morse II potential in section 4, while the results
are discussed in section 5.

2. The general formalism

The Rosen–Morse II (in short: RM II) potential belongs to the same family of exactly solvable
potentials as its trigonometric counterpart, the Rosen–Morse I (RM I) and also the Eckart
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potential. This family has been identified as the PII class within a transformation method [29]
which links the bound-state eigenfunctions of the corresponding Schrödinger equations with
the Jacobi polynomials. The same family is denoted as Type E in terms of the factorization
method [30].

Following the notation of [13, 14], the fundamental solutions ψ(±)(x) of the Schrödinger
equation

d2ψ

dx2
+ (E − V (x))ψ = 0 (1)

with the Rosen–Morse II potential

V (x) = − s(s + 1)

cosh2(x)
+ 2� tanh(x) (2)

can be written in terms of the hypergeometric function [31] F(a, b; c; z) in the forms

ψ(+)(x) ∼ (1 − tanh x)α/2(1 + tanh x)β/2F

(
−s +

α + β

2
, s + 1 +

α + β

2
; 1 + α; 1 − tanh x

2

)
(3)

and

ψ(−)(x) ∼ (1 − tanh x)−α/2(1 + tanh x)β/2

×F

(
−s +

β − α

2
, s + 1 +

β − α

2
; 1 − α; 1 − tanh x

2

)
, (4)

where α and β are two new parameters, specified in terms of E and � by equations [29](
α + β

2

)2

+

(
β − α

2

)2

+ E = 0,
α + β

2

β − α

2
+ � = 0. (5)

Note that (3) and (4) are connected by the transformation α ↔ −α. Concerning the two
parameters involved in the potential (2), for the moment we assume that s is real and positive,
while � can be either real or pure imaginary. In the latter case, � = iλ, λ ∈ R the complex
Rosen–Morse II potential (2) is PT -symmetric [13].

Note that the s ↔ −s − 1 transformation leaves both the potential (2) and the solutions
(3) and (4) invariant, the s < −1 domain is also covered automatically. We shall comment
on the remaining s ∈ [−1, 0] domain separately, which corresponds to the coupling constant
s(s + 1) ∈ [− 1

4 , 0
]

in the first term of (2). We shall also see that certain complex values of s
are also admissible in the case of the PT -symmetric Rosen–Morse II potential.

Bearing in mind the asymptotic properties of the hypergeometric function [31] we easily
obtain

ψ(+)(x → −∞) = 2(β+α)/2

[
	(α + 1)	(−β) exp(βx)

	
(−s + α−β

2

)
	

(
s + 1 + α−β

2

)
+

	(α + 1)	(β) exp(−βx)

	
(−s + α+β

2

)
	

(
s + 1 + α+β

2

)
]

(6)

ψ(−)(x → −∞) = 2(β−α)/2

[
	(−α + 1)	(−β) exp(βx)

	
(−s − α+β

2

)
	

(
s + 1 − α+β

2

)
+

	(−α + 1)	(β) exp(−βx)

	
(−s + β−α

2

)
	

(
s + 1 + β−α

2

)
]

(7)
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ψ(+)(x → +∞) = 2(β+α)/2 exp(−αx) (8)

ψ(−)(x → +∞) = 2(β−α)/2 exp(αx). (9)

These equations are useful when dealing with the scattering solutions of the Rosen–Morse
II potential. Note that the two terms inside the parentheses in (6) and (7) are connected by
the β ↔ −β relation. This is due to a basic transformation property of the hypergeometric
functions seen, e.g., in equation (15.3.3) of [31], which takes equations (3) and (4) into
equivalent forms in which −β appears instead of β everywhere (and also introduces a constant
factor 2β). This means that similarly to the sign of α, the sign of β does not influence the
results either. We will use this freedom to chose the signs in a way that results in formulae
similar to those obtained for the real Rosen–Morse II potential previously (see, e.g., [13, 29]
and references therein).

Equations (6)–(9) express the asymptotic behavior of the solutions in terms of the α and β

parameters, which in turn are directly related to the asymptotic wave numbers in the x → ±∞
limit. This is because it can be shown that

E − V (−∞) = E + 2� = −β2 (10)

E − V (+∞) = E − 2� = −α2, (11)

so the wave numbers can be expressed as

k = iβ, k′ = iα (12)

in the two limits. Obviously, since the odd component of the potential does not vanish
asymptotically, k 	= k

′
will hold in general.

3. The complex PT -symmetric Rosen–Morse II potential

When � = iλ with λ ∈ R, the Rosen–Morse II potential is complex and PT -symmetric. The
aim of this section is to investigate the bound and scattering sates in the potential

V (x) = − s(s + 1)

cosh2(x)
+ 2 iλ tanh(x). (13)

3.1. Bound states

Equations (5) now result in

E = −
(

α + β

2

)2

+

(
2λ

β + α

)2

. (14)

The bound states correspond to the boundary conditions

lim
x→±∞ ψ(x) = 0. (15)

Equations (8), (9) and (15) show that the bound-state solutions are obtained either for
Re(α) > 0 or for Re(α) < 0, and are described by the solutions ψ(+)(x) or ψ(−)(x),
respectively. The two cases are mutually excluding. For this reason, we restrict our attention
to the solution ψ(+)(x) in (3).

The regularity of solution (3) requires Re(β) > 0 in addition to Re(α) > 0. Accordingly,
the function (6) satisfies the asymptotic condition (15) as x → −∞ when, e.g.,

α + β

2
− s = −n, n = 0, 1, . . . , nmax. (16)
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Thus, the energies of the bound states are real

En = −(s − n)2 +
λ2

(s − n)2
, n = 0, 1, . . . , nmax. (17)

The corresponding eigenfunctions (3) can be expressed in terms of the Jacobi polynomials as
[13, 29]

ψn(x) = Cn(1 − tanh x)
α
2 (1 + tanh x)

β

2 P (α,β)
n (tanh x), (18)

where Cn is a normalization constant and

αn = s − n +
iλ

s − n
, βn = s − n − iλ

s − n
. (19)

According to the regularity conditions Re(α) > 0 and Re(β) > 0, equations (19) imply that
the number of bound states is always finite,

nmax < s. (20)

Before going on it is worth mentioning that thePT symmetry, in principle, allows complex
values of s too as s = − 1

2 + iσ [14]. In this case, the coupling coefficient of the cosh−2(x)

term becomes definitely positive, 1
4 + σ 2, so the real component of the potential (2) turns into

a finite barrier. Furthermore, a straightforward calculation shows that the two conditions of
normalizability Re(α) > 0 and Re(β) > 0 cannot be fulfilled at the same time, so this implies
that no regular solutions can exist in this case. The same holds in the s ∈ [−1, 0] domain too,
which was not included in the analysis before.

Let us now calculate the pseudo-norm of the functions (18). First we note that in
order to make these functions the eigenfunctions of the PT operator with unit eigenvalue
PT ψn(x) = ψn(x), the normalization constant Cn has to be chosen as

Cn = incn, cn ∈ R. (21)

This follows from the relation αn = β∗
n and the transformation properties of the Jacobi

polynomials with respect to changing their argument as z → −z [31]. Making use of the
defining formula of the Jacobi polynomials (e.g. equation (22.3.1) in [31]) one obtains

Inm ≡ 〈ψn|P|ψm〉 =
∫ ∞

−∞
ψn(x)[ψm(−x)]∗ dx =

∫ ∞

−∞
ψn(x)ψm(x) dx

= CnCm(−1)n+m2(αn+βn+αm+βm)/2−1

[
	

(
αn + βn + αm + βm

2
+ n + m

)]−1

×
n∑

k=0

(−1)k
(

αn + n

k

)(
βn + n

n − k

) m∑
j=0

(−1)j
(

αm + m

j

)(
βm + m

m − j

)

× 	
(αn + αm

2
+ n + m − k − j

)
	

(
βn + βm

2
+ k + j

)
. (22)

Here the integration was performed using equation (2.5.30.3) in [32]. The second equation
in (22) follows from the PT ψm(x) = ψm(x) requirement. It is notable that the structure of
(22) is similar to the corresponding formula obtained for the PT -symmetric (trigonometric)
Rosen–Morse I potential [25].

It is not obvious to prove the PT -orthogonality of different states from equation (22);
however, this can be done indirectly using the standard formula obtained from the respective
Schrödinger equations and integrating by part:

(En − [Em]∗)
∫ ∞

−∞
ψn(x)[ψm(−x)]∗ dx = 0. (23)
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Here we made use of the result that the wavefunctions (18) and their derivatives vanish
asymptotically.

The normalization constant can be evaluated from (22) after taking n = m:

Inn = C2
n2αn+βn−1 	(αn + n + 1)	(βn + n + 1)

n!	(αn + βn + n + 1)

(
1

αn

+
1

βn

)
(24)

= (−1)nc2
n22s−2n |	(s + 1 + iλ/(s − n))|2

n!	(2s − n + 1)

s − n

(s − n)2 + λ2/(s − n)2
. (25)

In order to evaluate the double sum in (22) we applied equations (4.2.2.3) and (4.2.2.43) from
[32]. It is clear that due to the s > n regularity condition all the components of Inn are
positive, except for the (−1)n term, so the sign of the pseudo-norm strictly follows the (−1)n

rule. This is similar to that observed for the PT -symmetric Scarf I [24] and Rosen–Morse
I [25] potentials as well as for other PT -symmetric potentials with an infinite number of
bound states [33, 34], but is different from the case of the PT -symmetric Scarf II potential
[19], which also has a finite number of bound states. Eventually, the normalization constant
appearing in the wavefunctions of the PT -symmetric Rosen–Morse II potential is

Cn = in2n−s

|	(s + 1 + iλ/(s − n))|
(

n!	(2s − n + 1)[(s − n)2 + λ2/(s − n)2]

s − n

)1/2

. (26)

3.2. Scattering states

Since � = iλ is purely imaginary, the non-vanishing odd component of the potential will be
purely imaginary in this case. In particular, for λ > 0 the imaginary potential component will
be absorptive for x < 0 and emissive for x > 0, respectively. For this reason the asymptotic
wave numbers (12) obtained from (10) and (11) will be complex.

Considering the parametrization

k = kR + ikI , k′ = k′
R + ik′

I (27)

and assuming that E is real, the relations

E = k2
R − k2

I = k′2
R − k′2

I (28)

λ = kRkI = −k′
Rk′

I (29)

follow. Direct calculations show that the solution of this set of equations is k′ = ±k∗. In
the case of complex wave numbers equations (10) and (11) can be used to determine the
correct relation of k and k′: for λ > 0 and E > 0, k2 = E + 2iλ = [(k′)2]∗ implies that
0 < Arg(k) < π/4 and 3π/4 < Arg(k′) < π , i.e., the k′ = −k∗ relation must hold. This
means kR = −k′

R > 0 and kI = k′
I > 0. (For λ < 0 the roles of k and k′ are exchanged.)

Considering equation (12), the asymptotic expansions (6)–(9) can be written as

ψ(+)(x → −∞) ∼ a
(+)
− eikRx e−kI x + b

(+)
− e−ikRx ekI x (30)

ψ(+)(x → +∞) ∼ a(+)
+ eik′

Rx e−k′
I x + b(+)

+ e−ik′
Rx ek′

I x (31)

ψ(−)(x → −∞) ∼ a
(−)
− eikRx e−kI x + b

(−)
− e−ikRx ekI x (32)

ψ(−)(x → +∞) ∼ a(−)
+ eik′

Rx e−k′
I x + b(−)

+ e−ik′
Rx ek′

I x , (33)

where

6
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a
(+)
− = 2(β+α)/2	(α + 1)	(β)

	
(−s + α+β

2

)
	

(
s + 1 + α+β

2

) b
(+)
− = 2(β+α)/2	(α + 1)	(−β)

	
(−s + α−β

2

)
	

(
s + 1 + α−β

2

) , (34)

a
(−)
− = 2(β−α)/2	(−α + 1)	(β)

	
(−s + β−α

2

)
	

(
s + 1 + β−α

2

) b
(−)
− = 2(β−α)/2	(−α + 1)	(−β)

	
(−s − α+β

2

)
	

(
s + 1 − α+β

2

) , (35)

a(+)
+ = 2(β+α)/2 b(+)

+ = 0, (36)

a(−)
+ = 0 b(+)

+ = 2(β−α)/2. (37)

The transmission and reflection coefficients can be calculated in the standard way by combining
the asymptotic expansions of the two solutions. For example, for λ > 0 (i.e., kR > 0 and
k′
R < 0) an incoming wave from the left and the reflected wave are represented by the first

and second terms of (30) and (32), respectively, while the transmitted wave comes from the
second terms of (31) and (33). At the same time, the linear combination coefficients have
to be chosen such that the terms with eik′

Rx should vanish. The transmission and reflection
coefficients for a wave coming from the left are

TL→R(k, k′) = 	(−s − ik/2 + ik′/2)	(s + 1 − ik/2 + ik′/2)

	(1 + ik′)	(−ik)
(38)

RL→R(k, k′) = TL→R(k, k′)
	(1 + ik′)	(ik)

	(−s + i(k + k′)/2)	(s + 1 + i(k + k′)/2)
. (39)

The bound-state solutions are obtained from the poles of the transmission coefficient (38), i.e.,
by setting the argument of the first gamma functions in the numerator to a non-positive integer.
With this and equations (5) the relation (16) is reproduced, while considering the second
gamma function in the same manner simply corresponds to the s ↔ −s − 1 replacement. It
is notable that the λ coupling coefficient of the odd potential component appears in T (k, k′)
and R(k, k′) only implicitly via k and k′.

The procedure can be repeated for an incoming wave from the right. The importance
of the odd imaginary component of asymptotically vanishing PT -symmetric potentials has
already been pointed out: in [27] this was discussed in connection with the handedness of the
problem. This phenomenon also seems to be important for potentials of the Rosen–Morse II
kind that possess an attractive and asymptotically vanishing even real well in addition to the
odd imaginary component. One important novelty is that in this case the imaginary potential
component does not vanish asymptotically. The transmission and reflection coefficients for
an incoming wave from the right are

TR→L(k, k′) = −k′

k
TL→R(k, k′) (40)

RR→L(k, k′) = RL→R(k, k′)
	(−ik′)
	(ik′)

	(−ik)

	(ik)

	(−s + i(k + k′)/2)

	(−s − i(k′ + k)/2)

	(s + 1 + i(k + k′)/2)

	(s + 1 − i(k′ + k)/2)
.

(41)

Equations (40) and (41) indicate that similar to asymptotically vanishing PT -symmetric
potentials [27], the reflection coefficient exhibits the handedness effect, while changing the
direction of the incoming wave modifies the transmission coefficient by complex phase factor
k∗/k.

As discussed previously, results for λ < 0 can be obtained by replacing the roles of k
and k′.

7
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4. The real Rosen–Morse II potential

For the sake of completeness, we summarize the corresponding results for the real Rosen–
Morse II potential with � = λ, λ ∈ R [35].

All the equations of section 2 are valid for both the real and complex Rosen–Morse II
potentials. When Re(α) > 0 and Re(β) > 0, the regular solution is ψ(+)(x) also for the real
Rosen–Morse II potential (2). The requirement that the asymptotic form (6) of ψ(+)(x) for
x → −∞ satisfy the corresponding condition (15) leads also in this case to the same bound-
state condition (16) as in the case of the complex Rosen–Morse II potential. Accordingly, the
bound-state energies are obtained now from equations (5) as

En = −(s − n)2 − λ2

(s − n)2
, n = 0, 1, . . . , nmax. (42)

Although the regularity conditions are formally the same in both the real and complex
potentials, the actual content and implications of these conditions are basically different
in the two cases. Indeed in the present case, the place of equations (15) is taken over by

αn = s − n +
λ

s − n
, βn = s − n − λ

s − n
. (43)

The bound-state eigenfunctions are obtained now from the same equation (18), but with αn

and βn given by equations (43) and with different values of the normalization constants Cn

(see below). However, in contrast to equation (20), the largest value nmax of the principal
quantum number is limited in this case not by s alone, but by a smaller quantity, namely

nmax < s − |λ|1/2. (44)

The different choice of � is also reflected by the wavefunctions (18) in that they can
now be written in a purely real form. The Hermitian inner product of these functions can be
calculated in a way similar to that described previously, and the results will also be rather
similar formally:

Jnm ≡ 〈ψn|ψm〉 =
∫ ∞

−∞
ψn(x)[ψm(x)]∗ dx

= CnC
∗
m(−1)n+m2(αn+βn+αm+βm)/2−1

[
	

(
αn + βn + αm + βm

2
+ n + m

)]−1

×
n∑

k=0

(−1)k
(

αn + n

k

) (
βn + n

n − k

) m∑
j=0

(−1)j
(

αm + m

j

) (
βm + m

m − j

)

× 	
(αn + αm

2
+ n + m − k − j

)
	

(
βn + βm

2
+ k + j

)
. (45)

The orthogonality of the wavefunctions can be proven using the Hermitian analog of (23), and
the normalization constants can also be determined from a formula that is almost identical
to (25):

Jnn = |Cn|22αn+βn−1 	(αn + n + 1)	(βn + n + 1)

n!	(αn + βn + n + 1)

(
1

αn

+
1

βn

)
(46)

= |Cn|222s−2n 	(s + 1 + λ/(s − n))	(s + 1 − λ/(s − n))

n!	(2s − n + 1)

s − n

(s − n)2 − λ2/(s − n)2
. (47)
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From (47) it is obvious that due to En < 0 and the regularity conditions (which set the
argument of each gamma function to a positive value) Jnn is positive. The actual value of the
normalization constant is

Cn = 2n−s

(
n!	(2s − n + 1)[(s − n)2 − λ2/(s − n)2]

	(s + 1 + λ/(s − n))	(s + 1 − λ/(s − n))(s − n)

)1/2

. (48)

This agrees with the results of [36] if the substitutions U0 = s(s + 1), B0 = 2λ, α = 1 are
made and the units are chosen as h̄ = 2m = 1. It has to be mentioned that there is a misprint
in equation (3.7) of [36]: the correct formula should contain −B0 instead of U0.

4.1. Scattering states

The mathematical formulation for the real Rosen–Morse II potential is rather similar to that
of the PT -symmetric one; however, the physical interpretation of the results differs in several
respects. The evaluation of the reflection and transmission coefficients can be done in the
same way as in the PT -symmetric case with the difference that the wave numbers k and k′ are
now real and can both be chosen positive. This means replacing k′ with −k′ in equations (38)
and (39). These equations reproduce the results of [37] for E > |V (±∞)| = 2|�|.

Changing the direction of the incoming wave also results in expressions obtained from
(40) and (41) by replacing k′ by −k′. However, since k and k′ are real, making use of the
relation 	(z∗) = [	(z)]∗ it can be seen that the reflection coefficient can change only up to a
phase factor, while the transmission coefficient changes by a real factor.

For |E| < 2|�| the scattering solution will decay exponentially in one direction, so there
will be only a reflected wave in that case.

5. Discussion

This section aims to show the detailed comparison of the bound-state spectra, the normalization
constants of the corresponding eigenfunctions as well as scattering aspects in the case of the
PT -symmetric and real Rosen–Morse II potentials. In this respect, the main features can be
summarized as follows.

(i) There exist in both potentials at most a finite number of bound states, the maximum
value of the principal quantum number being limited by the inequalities (20) and (44),
respectively. All the bound-state energies are real in both cases.

(ii) In general, the number of bound states in the real potential is smaller than that in its
complex counterpart. Moreover, as a consequence of equation (44), the real potential
cannot support bound states at all when s � |λ|1/2. In the complex potential, however,
there always exists at least one bound state which is the ground state corresponding to
n = 0. The energy of this universal ground state is E0 = −s2 + λ2/s2.

It is notable that the existence of a local minimum of the real Rosen–Morse II potential,
which does actually occur whenever s(s + 1) > |λ|, is a necessary but not a sufficient
condition for the existence of at least one bound state in this potential. As mentioned
above, the sufficient condition is s2 > |λ|, which requires that the potential well be ‘deep
enough’. As is well known, this circumstance is connected to Heisenberg’s uncertainty
relations. A bounded particle is always localized to some extent in the potential well and
thus, in its momentum and kinetic energy an indeterminacy occurs. For this reason, the
non-symmetric potential wells must be sufficiently deep in order to be able to support
bound states. Surprisingly, in the case of the PT -symmetric Rosen–Morse II potential
this well-known fact of the classical quantum mechanics does not hold. In this potential,
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at least one bound state always exists. This feature might be due to the imaginary potential
component, which in contrast to the real component is asymptotically non-vanishing, and
thus plays a more significant role in this case than in other potentials.

(iii) In the complex Rosen–Morse II and the real and symmetric Pöschl–Teller potential, which
is the � = 0 special case of (2), the number of bound states is always the same, regardless
the value of λ, i.e.

nmax(PT RM II) = nmax(Poschl–Teller). (49)

(iv) In the three potentials mentioned up to now the energy levels corresponding to the same
value of n, when exist, are shifted upward with respect to each other as follows:

En(real RM II) < En(Poschl–Teller) < En(PT RM II). (50)

(v) While in the real Rosen–Morse II and the Pöschl–Teller potential the bound-state energies
are always negative, in the PT -symmetric complex Rosen–Morse II potential the bound
states of non-negative energy can exist whenever the condition

s − |λ|1/2 � n < s (51)

is met. The equality case n = s − |λ|1/2 of (51) yields a zero-energy bound state.
Thus, the energy of the universal ground state in the PT -symmetric Rosen–Morse II
potential is zero when |λ| = s2, in agreement with the point (ii). The energies of
all the exited states are positive in this case. Moreover, when |λ| > s2 the whole
bound-state spectrum of the PT -symmetric Rosen–Morse II potential is positive. When
|λ| > (1 + 51/2)s2/2, the whole bound-state spectrum is shifted even above the largest
asymptotic value limx→±∞ |V (x)| = |λ| of the complex potential.

Bearing in mind that in the PT -symmetric Rosen–Morse II potential all the bound-
state energies are positive for |λ| > s2, it is reasonable to assume that this phenomenon
might be due to the dominating non-Hermitian potential component, which, contrary to
the real (Pöschl–Teller) potential component, does not vanish asymptotically. We note
that no similar behavior was observed for the PT -symmetric Scarf II potential [19] which
has the same real component, but its imaginary component vanishes asymptotically. In
that case, increasing non-Hermiticity led to the spontaneous breakdown of PT -symmetry.
We mention that the occurrence of the positive energy bound states in the PT -symmetric
Rosen–Morse II potential has already been pointed out by Znojil [9]. There a parallel has
been drawn with the empirically observed positive energy eigenvalues in the V (x) = ix3

potential [1] which is also purely imaginary asymptotically. (The real and positive nature
of the spectrum of this latter potential and some of its generalization has been proven
later analytically [38, 39].) It appears that for the occurrence of the positive energy
solutions an asymptotically non-vanishing, but finite imaginary potential component is
also sufficient. Nevertheless, it is not immediately obvious why the whole positive
bound-state energy spectrum can be shifted arbitrarily far above the largest asymptotic
value limx→±∞ |V (x)| = |λ| of the PT -symmetric Rosen–Morse II potential.

(vi) While in the real Rosen–Morse II potential, the bound state eigenfunctions can always
be normalized to +1, the pseudo-norm of the bound-state eigenfunctions in the complex
Rosen–Morse II potential follows the (−1)n rule.

The sign change of the pseudo-norm according to the (−1)n rule has also been
observed for the PT -symmetric Scarf I [24] and Rosen–Morse I [25] potentials, as well
as for other PT -symmetric potentials with an infinite number of bound states [33, 34],
but it differs from the case of the PT -symmetric Scarf II potential [19], which also has a
finite number of bound states.
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(vii) The results obtained for the transmission and reflection coefficients of the PT -symmetric
and real Rosen–Morse potentials are similar from the mathematical point of view, but their
physical content differs significantly. Due to the asymmetric structure of the potential,
the asymptotic wave numbers differ in both cases for x → ∞ and x → −∞. A
major difference is, however, that the wave numbers are complex for the PT -symmetric
potential. Changing the direction of the incoming wave changes the transmission and
reflection coefficients in both cases. In the case of the real potential, the transmission
coefficient changes with a real factor, while the reflection coefficient picks up only an
extra phase. In thePT -symmetric case, the transmission coefficient changes by a complex
phase factor, while the reflection coefficient changes more drastically, corresponding to
the handedness effect observed for local PT -symmetric scattering potentials in general.
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[17] Sinha A, Lévai G and Roy P 2004 Phys. Lett. A 322 78
[18] Ahmed Z 2001 Phys. Lett. A 282 343
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[29] Lévai G 1989 J. Phys. A: Math. Gen. 22 689
[30] Infeld L and Hull T D 1951 Rev. Mod. Phys. 23 21

11

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1098/rspa.1942.0023
http://dx.doi.org/10.1103/RevModPhys.15.175
http://dx.doi.org/10.1103/PhysRev.123.2183
http://dx.doi.org/10.1016/0550-3213(69)90098-4
http://dx.doi.org/10.1016/0003-4916(92)90284-S
http://www.arxiv.org/abs/0706.4064
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1016/S0375-9601(99)00429-6
http://dx.doi.org/10.1016/S0375-9601(99)00805-1
http://dx.doi.org/10.1088/0305-4470/33/7/102
http://dx.doi.org/10.1088/0305-4470/33/24/311
http://dx.doi.org/10.1016/S0375-9601(00)00400-X
http://dx.doi.org/10.1088/0305-4470/33/1/101
http://dx.doi.org/10.1088/0305-4470/33/40/313
http://dx.doi.org/10.1016/S0375-9601(01)00676-4
http://dx.doi.org/10.1088/0305-4470/36/27/313
http://dx.doi.org/10.1016/j.physleta.2004.01.009
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1016/S0375-9601(02)00779-X
http://dx.doi.org/10.1016/S0375-9601(00)00512-0
http://dx.doi.org/10.1088/0305-4470/34/4/310
http://dx.doi.org/10.1088/0305-4470/35/24/305
http://dx.doi.org/10.1088/0305-4470/35/41/311
http://dx.doi.org/10.1088/0305-4470/39/32/S17
http://dx.doi.org/10.1016/j.physleta.2008.08.073
http://dx.doi.org/10.1088/1751-8113/40/27/F06
http://dx.doi.org/10.1016/j.physleta.2004.03.002
http://dx.doi.org/10.1016/j.aop.2006.05.011
http://dx.doi.org/10.1088/0305-4470/22/6/020
http://dx.doi.org/10.1103/RevModPhys.23.21


J. Phys. A: Math. Theor. 42 (2009) 195302 G Lévai and E Magyari
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